Search results for "Robin boundary condition"

showing 10 items of 24 documents

Two-Sided Estimates of the Solution Set for the Reaction–Diffusion Problem with Uncertain Data

2009

We consider linear reaction–diffusion problems with mixed Dirichlet–Neumann–Robin conditions. The diffusion matrix, reaction coefficient, and the coefficient in the Robin boundary condition are defined with an uncertainty which allow bounded variations around some given mean values. A solution to such a problem cannot be exactly determined (it is a function in the set of “possible solutions” formed by generalized solutions related to possible data). The problem is to find parameters of this set. In this paper, we show that computable lower and upper bounds of the diameter (or radius) of the set can be expressed throughout problem data and parameters that regulate the indeterminacy range. Ou…

Set (abstract data type)Range (mathematics)Uncertain dataBounded functionMathematical analysisReaction–diffusion systemSolution setFunction (mathematics)Robin boundary conditionMathematics
researchProduct

Nonlinear Robin problems with unilateral constraints and dependence on the gradient

2018

We consider a nonlinear Robin problem driven by the p-Laplacian, with unilateral constraints and a reaction term depending also on the gradient (convection term). Using a topological approach based on fixed point theory (the Leray-Schauder alternative principle) and approximating the original problem using the Moreau-Yosida approximations of the subdifferential term, we prove the existence of a smooth solution.

Mathematics::Functional Analysisfixed pointSettore MAT/05 - Analisi Matematicalcsh:Mathematicsp-LaplacianMathematics::Analysis of PDEsnonlinear regularityconvection termRobin boundary conditionlcsh:QA1-939maximal monotone mapsubdifferential termElectronic Journal of Differential Equations
researchProduct

Superlinear Robin Problems with Indefinite Linear Part

2018

We consider a semilinear Robin problem with an indefinite linear part and a superlinear reaction term, which does not satisfy the usual in such cases AR condition. Using variational methods, together with truncation–perturbation techniques and Morse theory (critical groups), we establish the existence of three nontrivial solutions. Our result extends in different ways the multiplicity theorem of Wang.

Regularity theoryPure mathematicsGeneral Mathematics010102 general mathematicsThree solutions theoremMultiplicity (mathematics)Robin boundary condition01 natural sciencesRobin boundary conditionTerm (time)Indefinite potential function010101 applied mathematicsSettore MAT/05 - Analisi Matematica0101 mathematicsSuperlinear reaction termCritical groupMathematicsMorse theory
researchProduct

A Fixed Domain Approach in Shape Optimization Problems with Neumann Boundary Conditions

2008

Fixed domain methods have well-known advantages in the solution of variable domain problems, but are mainly applied in the case of Dirichlet boundary conditions. This paper examines a way to extend this class of methods to the more difficult case of Neumann boundary conditions.

symbols.namesakeFictitious domain methodDirichlet boundary conditionMathematical analysissymbolsNeumann boundary conditionShape optimizationBoundary value problemMixed boundary conditionDomain (mathematical analysis)Robin boundary condition
researchProduct

A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne-Weinberger inequality

2015

We consider evolutionary reaction-diffusion problem with mixed Dirichlet--Robin boundary conditions. For this class of problems, we derive two-sided estimates of the distance between any function in the admissible energy space and exact solution of the problem. The estimates (majorants and minorants) are explicitly computable and do not contain unknown functions or constants. Moreover, it is proved that the estimates are equivalent to the energy norm of the deviation from the exact solution.

ta113InequalityApplied Mathematicsmedia_common.quotation_subjectta111Numerical Analysis (math.NA)Parabolic partial differential equationExact solutions in general relativityevolutionary reaction-diffusion problemsNorm (mathematics)FOS: MathematicsDiscrete Mathematics and CombinatoricsA priori and a posterioriApplied mathematicsBoundary value problemMathematics - Numerical AnalysisDirichlet–Robin boundary conditionsAnalysisMathematicsmedia_common
researchProduct

Boundary discretization based on the residual energy using the SGBEM

2007

Abstract The paper has as objective the estimation of the error in the structural analysis performed by using the displacement approach of the Symmetric Galerkin Boundary Element Method (SGBEM) and suggests a strategy able to reduce this error through an appropriate change of the boundary discretization. The body, characterized by a domain Ω and a boundary Γ−, is embedded inside a complementary unlimited domain Ω∞⧹Ω bounded by a boundary Γ+. In such new condition it is possible to perform a separate valuation of the strain energies in the two subdomains through the computation of the work, defined generalized, obtained as the product among nodal and weighted quantities on the actual boundar…

Meshes optimizationGalerkin approachMechanical EngineeringApplied MathematicsMathematical analysisBoundary (topology)Mixed boundary conditionBoundary knot methodSingular boundary methodCondensed Matter PhysicsRobin boundary conditionSymmetric Boundary Element MethodMaterials Science(all)Mechanics of MaterialsModeling and SimulationModelling and SimulationNeumann boundary conditionFree boundary problemGeneral Materials ScienceCauchy boundary conditionMathematicsInternational Journal of Solids and Structures
researchProduct

Pairs of solutions for Robin problems with an indefinite and unbounded potential, resonant at zero and infinity

2018

We consider a semilinear Robin problem driven by the Laplacian plus an indefinite and unbounded potential and a Caratheodory reaction term which is resonant both at zero and $$\pm \infty $$ . Using the Lyapunov–Schmidt reduction method and critical groups (Morse theory), we show that the problem has at least two nontrivial smooth solutions.

Pure mathematicsReduction (recursion theory)General Mathematicsmedia_common.quotation_subject010102 general mathematicsZero (complex analysis)Algebraic geometryRobin boundary conditionInfinity01 natural sciencesRobin boundary conditionNumber theoryresonance0103 physical sciencesLyapunov-Schmidt reduction method010307 mathematical physics0101 mathematicsindefinite and unbounded potentialcritical groupsLaplace operatorMathematicsMorse theorymedia_common
researchProduct

Strictly convergent algorithm for an elliptic equation with nonlocal and nonlinear boundary conditions

2012

The paper describes a formally strictly convergent algorithm for solving a class of elliptic problems with nonlinear and nonlocal boundary conditions, which arise in modeling of the steady-state conductive-radiative heat transfer processes. The proposed algorithm has two levels of iterations, where inner iterations by means of the damped Newton method solve an appropriate elliptic problem with nonlinear, but local boundary conditions, and outer iterations deal with nonlocal terms in boundary conditions.

conductive-radiative heat transferelliptic equationMathematical analysisMixed boundary conditionRobin boundary conditionPoincaré–Steklov operatorNonlinear systemElliptic curveNewton methodModeling and SimulationQA1-939Neumann boundary conditionFree boundary problemBoundary value problemAlgorithmMathematicsAnalysisMathematicsMathematical Modelling and Analysis
researchProduct

Porous medium equation with absorption and a nonlinear boundary condition

2002

where is a bounded domain with smooth boundary, @=@ is the outer normal derivative, m ? 1; p; and q are positive parameters and u0 is in L∞( ). Problems of this form arise in mathematical models in a number of areas of science, for instance, in models for gas or :uid :ow in porous media [3] and for the spread of certain biological populations [13]. In the semilinear case (that is for m=1), there is an extensive literature about global existence and blow-up results for this type of problems, see among others, [5,9,16] and the literature therein. For the degenerate case (that is for m = 1), with a nonlinear boundary condition, local existence and uniqueness of weak solutions which are limit o…

Applied MathematicsMathematical analysisNeumann boundary conditionFree boundary problemNo-slip conditionBoundary (topology)UniquenessBoundary value problemAnalysisRobin boundary conditionPoincaré–Steklov operatorMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

Positive solutions for nonlinear Robin problems

2017

We consider a parametric Robin problem driven by the p-Laplacian with an indefinite potential and with a superlinear reaction term which does not satisfy the Ambrosetti-Rabinowitz condition. We look for positive solutions. We prove a bifurcation-type theorem describing the nonexistence, existence and multiplicity of positive solutions as the parameter varies. We also show the existence of a minimal positive solution $\tilde{u}_\lambda$ and establish the monotonicity and continuity of the map $\lambda\to \tilde{u}_\lambda$.

truncation and comparison techniquesminimax positive solutionSettore MAT/05 - Analisi Matematicalcsh:MathematicsMathematics::Analysis of PDEssuperlinear reactionRobin boundary condition superlinear reaction truncation and comparison techniques bifurcation-type result minimax positive solutionRobin boundary conditionbifurcation-type resultlcsh:QA1-939
researchProduct