Search results for "Robin boundary condition"
showing 10 items of 24 documents
Two-Sided Estimates of the Solution Set for the Reaction–Diffusion Problem with Uncertain Data
2009
We consider linear reaction–diffusion problems with mixed Dirichlet–Neumann–Robin conditions. The diffusion matrix, reaction coefficient, and the coefficient in the Robin boundary condition are defined with an uncertainty which allow bounded variations around some given mean values. A solution to such a problem cannot be exactly determined (it is a function in the set of “possible solutions” formed by generalized solutions related to possible data). The problem is to find parameters of this set. In this paper, we show that computable lower and upper bounds of the diameter (or radius) of the set can be expressed throughout problem data and parameters that regulate the indeterminacy range. Ou…
Nonlinear Robin problems with unilateral constraints and dependence on the gradient
2018
We consider a nonlinear Robin problem driven by the p-Laplacian, with unilateral constraints and a reaction term depending also on the gradient (convection term). Using a topological approach based on fixed point theory (the Leray-Schauder alternative principle) and approximating the original problem using the Moreau-Yosida approximations of the subdifferential term, we prove the existence of a smooth solution.
Superlinear Robin Problems with Indefinite Linear Part
2018
We consider a semilinear Robin problem with an indefinite linear part and a superlinear reaction term, which does not satisfy the usual in such cases AR condition. Using variational methods, together with truncation–perturbation techniques and Morse theory (critical groups), we establish the existence of three nontrivial solutions. Our result extends in different ways the multiplicity theorem of Wang.
A Fixed Domain Approach in Shape Optimization Problems with Neumann Boundary Conditions
2008
Fixed domain methods have well-known advantages in the solution of variable domain problems, but are mainly applied in the case of Dirichlet boundary conditions. This paper examines a way to extend this class of methods to the more difficult case of Neumann boundary conditions.
A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne-Weinberger inequality
2015
We consider evolutionary reaction-diffusion problem with mixed Dirichlet--Robin boundary conditions. For this class of problems, we derive two-sided estimates of the distance between any function in the admissible energy space and exact solution of the problem. The estimates (majorants and minorants) are explicitly computable and do not contain unknown functions or constants. Moreover, it is proved that the estimates are equivalent to the energy norm of the deviation from the exact solution.
Boundary discretization based on the residual energy using the SGBEM
2007
Abstract The paper has as objective the estimation of the error in the structural analysis performed by using the displacement approach of the Symmetric Galerkin Boundary Element Method (SGBEM) and suggests a strategy able to reduce this error through an appropriate change of the boundary discretization. The body, characterized by a domain Ω and a boundary Γ−, is embedded inside a complementary unlimited domain Ω∞⧹Ω bounded by a boundary Γ+. In such new condition it is possible to perform a separate valuation of the strain energies in the two subdomains through the computation of the work, defined generalized, obtained as the product among nodal and weighted quantities on the actual boundar…
Pairs of solutions for Robin problems with an indefinite and unbounded potential, resonant at zero and infinity
2018
We consider a semilinear Robin problem driven by the Laplacian plus an indefinite and unbounded potential and a Caratheodory reaction term which is resonant both at zero and $$\pm \infty $$ . Using the Lyapunov–Schmidt reduction method and critical groups (Morse theory), we show that the problem has at least two nontrivial smooth solutions.
Strictly convergent algorithm for an elliptic equation with nonlocal and nonlinear boundary conditions
2012
The paper describes a formally strictly convergent algorithm for solving a class of elliptic problems with nonlinear and nonlocal boundary conditions, which arise in modeling of the steady-state conductive-radiative heat transfer processes. The proposed algorithm has two levels of iterations, where inner iterations by means of the damped Newton method solve an appropriate elliptic problem with nonlinear, but local boundary conditions, and outer iterations deal with nonlocal terms in boundary conditions.
Porous medium equation with absorption and a nonlinear boundary condition
2002
where is a bounded domain with smooth boundary, @=@ is the outer normal derivative, m ? 1; p; and q are positive parameters and u0 is in L∞( ). Problems of this form arise in mathematical models in a number of areas of science, for instance, in models for gas or :uid :ow in porous media [3] and for the spread of certain biological populations [13]. In the semilinear case (that is for m=1), there is an extensive literature about global existence and blow-up results for this type of problems, see among others, [5,9,16] and the literature therein. For the degenerate case (that is for m = 1), with a nonlinear boundary condition, local existence and uniqueness of weak solutions which are limit o…
Positive solutions for nonlinear Robin problems
2017
We consider a parametric Robin problem driven by the p-Laplacian with an indefinite potential and with a superlinear reaction term which does not satisfy the Ambrosetti-Rabinowitz condition. We look for positive solutions. We prove a bifurcation-type theorem describing the nonexistence, existence and multiplicity of positive solutions as the parameter varies. We also show the existence of a minimal positive solution $\tilde{u}_\lambda$ and establish the monotonicity and continuity of the map $\lambda\to \tilde{u}_\lambda$.